Local processing modifies spike timing in non-primary auditory cortex G. Christopher Stecker¹, Ian A. Harrington², Ewan A. Macpherson³, & John C. Middlebrooks³

1. Department of Speech and Hearing Sciences, University of Washington; 2. Department of Psychology, Augustana College; 3. Kresge Hearing Research Institute, University of Michigan.

Possible origins of long and stimulus-modulated spike latencies in non-primary auditory cortex:

Delayed Input

Long latencies reflect timing of input. (e.g. via slower excitatory pathway or feedforward processing delay)

Hypothesis: output latencies will covary with input latencies across recording sites and stimulus features.

Local Processing

Long latencies reflect local delay of early input. (e.g. response slowed by tonic or early inhibition.

Hypothesis: input latencies will not vary between recording sites or with stimulus features. Output latencies will vary independently of input latencies.

Approach: use local field potential (LFP) as marker of earliest detectable event in vicinity of recorded unit.

Compare LFP ("input") latency to spike ("output") latency

Recordings

Anesthetized cat, a-chloralose IV 80-ms Gaussian noise bursts, thr+20 dB Loudspeakers every 20° in azimuth Multi-channel probes with 16 sites spaced 100 or 150 mm Recordings in right hemisphere Cortical areas A1 (304 sites). AAF (140 sites), PAF (411 sites), and DZ (394 sites).

Analysis

Spike latency

L_{spk}: Geometric mean of first spike latency across trials of given stimulus. Median L_{Spk} (overall latency), ΔL_{spk} (range) computed across azimuth.

LFP signal processing

Recordings low-pass filtered at 300 Hz, resampled at 1.25 kHz. Averaged LFP waveform is median across trials of each stimulus type.

LFP Latency calculation

Threshold at 90th percentile of pre-stim voltages. L_{lfn}: Stimulus-specific latency Median L_{Ifp}: overall across azimuth ΔL_{Ifp} : range across azim L_{spk}-L_{lfp} or log(L_{spk}/L_{lfp}): input/output delay

Multi-unit activity (MUA)

Alternative to sorted spikes (spk). Recordings bandpass filtered at 1-4kHz, rectified and low-pass filtered to estimate envelope in spike band. Stats defined as for lfp.

3. Do input and output latencies covary across azimuth?

Correlating latency across azimuth at each recording site:

Input and output latencies are correlated across azimuth.

Examples of stimulus-specific spike latency vs LFP latency: Seven random example units (colors) from each field.

Degree of correlation is similar across cortical fields.

3b. What about MUA latencies?

Conclusions and Questions

Local processing? YES

Spike latency \neq LFP latency + fixed delay. LFP latencies are similar across cortical fields. Spike latencies are not. LFP latencies are weakly modulated by azimuth.

- Spike latencies are strongly modulated by azimuth.
- Stimulus-specific delay (L_{spk}-L_{lfp}) varies between fields.

Delayed input? YES

Some evidence for longer LFP latencies in non-primary cortex. In all fields, high correlation between spike and LFP latency across azimuth. Latencies reflect both delayed input and local processing Input-output delay is multiplicative, not additive (local process not independent of input timing). "Large-print" theory (latency coding for the temporally impaired?)

Primary vs non-primary fields

Non-primary fields (PAF, DZ) noted for long spike latencies. Non-primary LFP latencies are longer than in primary AC, but input/output delay is even greater still. Spike latency codes stimulus features in both primary and non-primary fields. Non-primary fields similar to primary but temporally exaggerated?

Inhibited or Inhibiting?

Does early activity visible in LFP reflect (1) subthreshold excitation or (2) early non-specific inhibition?

Why are MUA latencies intermediate between LFP and spike latencies, and why is their stimulus sensitivity similar to LFP, not spikes? -Contamination by slow wave? -Exaggerated latency range with sorted spikes? -Contribution of local interneurons?

LFP waveform structure in primary and non-primary fields. Do later deflections relate to late spike timing?

Acknowledgments

The authors would like to thank Zekiye Onsan for technical and administrative support, and Brian Mickey and Chen-Chung Lee for assistance with data collection. Funding was provided by the National Institute on Deafness and Other Communication Disorders (NIDCD: R01 DC-00429, P30 DC-05188, F32-DC-006113, T32 DC-00011, R03 DC-006809), and National Science Foundation (NSF: DBI-0107567).

References

Eggermont, J. J. J Neurophysiol 80: 2151-2161, 1998. Eggermont, J. J. and Mossop. J Neurophysiol 80: 2133-2150, 1998. Norena, A., and Eggermont, J. J. Hear Res 166: 202-213, 2002. Stecker GC, Harrington IA, Macpherson EA, and Middlebrooks JC. J Neurophysiol, 94: 1267-80, 2005. Stecker GC, Mickey BJ, Macpherson EA, and Middlebrooks JC. J Neurophysiol 89: 2889-2903, 2003.