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SIngle-Cue ILD or ITD Classification

Cross-Cue Classification

▪ AC representation of ILD and ITD manifests in fMRI via reliable multi-voxel patterns.

▪ Patterns of activity are at least partially consistent across individual subjects.

▪ Cross-cue classification supports the existence of cue-independent spatial representations, or AC 
populations with matched ITD & ILD tuning. 

▪ DO NOT rule out cue-specific representations within subregions of AC. 

Conclusions

Single-Cue Classification

▪ Robust classification of contralateral ILDs in each 
hemisphere. 
▪ Poor ITD classification in right hemisphere (RH).

▪ Combining voxels across both hemispheres (BH) 
reduced classification error at lateral locations.
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Binaural Cue
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Cross-Cue Classification

▪ Better-than-chance classification in both 
hemispheres, including midline positions. 

▪ Successful classification for both cue 
combinations (ILD→ITD and ITD→ILD).

▪ Better ITD classification when trained with ILD.

Background

Experimental Design

Task Cue: Detect intermittently presented targets 
consisting of a change in Location (right/left), Pitch 
(higher/lower), or Visual cue (brighter/darker). 
▪ Task blocks presented in random order, 30 seconds 
duration, 7 blocks per run, 10 trials in each block. 

Acoustic Stimuli: trains of 16 white noise bursts, 1 ms burst duration, burst 
rate = 100 Hz at 90 dBpe SPL. Trains presented in 1 second “trials”, each 
with 4 stimulus intervals. Intertrial interval range from 1-5 s. 
▪ Interaural Level Difference (ILD) [-20, -10, 0, 10, 20 dB] or Interaural Time 
Difference (ITD) [-800, -400, 0, 400, 800 µs] varied across trials. Only ILD or 
ITD presented within a run, and trial order was counterbalanced (continuous 
carryover design).

Targets: The 3 target “types” are presented throughout the run regardless of 
the task cue; participants are instructed to respond only when detecting the 
specifically cued target.
▪ Targets presented at rate of 2/7 trials.
▪ Location targets: 5 dB change in ILD runs, 200 µs change in ITD runs. 
Pitch targets: 40% increase or decrease in burst rate. Visual targets (fixation 
box brighter or dimmer).

Participants: N=10 total (3 male, 7 female) normal 
hearing adults (22-35 years), right handed native 
English speakers.

Scan Acquisition: Continuous event-related imaging 
paradigm (TR = 2s, 42 slices, 2.75 x 2.75 x 3mm),  at 3T 
(Phillips).
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Independent Cue Representation

Combined Cue Representation
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SVM training and 
classification

- within ILD runs

- within ITD runs

- Cross Cue: train SVM with 
ILD; use SVM to classify ITD

- Cross Cue: train SVM with 
ITD; use SVM to classify ILD
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Task Blocks

Varying ILD or ITD
Targets

1. Can multi-voxel patterns classify binaural cue values (ILD or ITD)?

2. Are voxel patterns cue-specific or cue-indpendent? 
  Can ILD voxel patterns classify ITD voxel patterns, and vice versa?Q

ue
st

io
ns

Multi-voxel pattern analysis (MVPA) using support-vector machines (SVM).
- few assumptions regarding response magnitude.
- consistently weak responses can contribute as much as consistently strong responses.
- allows for functional interpretation of results. A
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Auditory cortex (AC): plays a key role in sound localization.
 Responses are sensitive to interaural time and level differences (ITD and ILD).
 fMRI: strong contralateral preference to ILD, weak contralateral preference for ITD.
 fMRI, MEG, EEG, lesion studies support partially overlapping ITD, ILD representations.B

ac
kg

ro
un

d

▪ Standard preprocessing: motion correction, high pass filtering 
(0.01 Hz), individual subject registration using FSL.

▪ Z-transform the signal timecourse in each voxel; interpolate 
and extract 12-s response following each trial.

▪ Regress single-trial timecourse with 12-s standardized 
hemodynamic response function  (HRF from Glover 1999).

▪ Regression (beta) weights quantify single-trial response 
magnitudes in each voxel.

▪ A region of interest (ROI) defined the auditory cortex (AC) 
based on Desikan et al. (2006) parcellation of Heschl’s Gyrus 
and posterior Superior Temporal Gyrus. 

▪ Voxels within ROI define patterns for MVPA with libsvm.

Voxel-Based FunctionaI Analysis
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Confusion matrices plot probability as a function of the target (x-axis) and classified response (y-axis) for 5 binaural conditions 
(chance = 0.2). Root mean squared error (right column) was plotted with respect to chance for each binaural condition for left 
(blue), right (red) and both (black) hemisphere datasets. * denote p<0.05 (uncorrected) based on 1000 fold permutation test.
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Which voxels contribute to cross-cue classification?

Methods

▪ Compute classification weight for each voxel.
 Degree of association (+ or -) with contralateral response. 
 Cross-cue conditions only (ILD→ITD or ITD→ILD). 

▪ Identify top 25th percentile; project to flattened cortical surface.

▪ Figures plot intersubject overlap in highly-weighted voxels. 

▪ Averaged across training conditions (ILD→ITD, ITD→ILD).

 

Results

▪ High degree of overlap suggests regions contributing to 
cross-clue classification (presumably, cue-independent 
responses). 

▪ Posterior-lateral Heschl’s Gyrus, and posterior-lateral planum 
temporale are consistently represented.
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